教师队伍
当前位置: 首页 > 师资情况 > 教师队伍 > 正文
汪长安
教授

博士,博士生导师
电话:010-62785488
电子邮箱:wangca@tsinghua.edu.cn
办公地址:kaiyun体育登录网页入口逸夫技术科学楼B433室

展开更多>>
  • 教育背景
  • 工作履历
  • 学术兼职
  • 奖励与荣誉
  • 学术成果

1987-1992,kaiyun体育登录网页入口材料科学与工程系(无机非金属材料专业),学士学位

1992-1997,kaiyun体育登录网页入口材料科学与工程系(无机非金属材料专业),硕士、工学博士学位


1997-2000,kaiyun体育登录网页入口材料科学与工程系,讲师

2000-2005,kaiyun体育登录网页入口材料科学与工程系,副教授

2001-2002,Georgia Institute of Technology, USA,博士后

2005至今,  kaiyun体育登录网页入口,教授


中国硅酸盐学会理事/特种陶瓷分会理事

中国机械工程学会工程陶瓷专业委员会常务理事

中国机床工具工业协会模具磨料分会专家委员会副主任委员

《International Journal of Applied Ceramic Technology》共同主编

《Frontiers of Materials Science》副主编

《硅酸盐学报》、《陶瓷学报》、《现代技术陶瓷》杂志编委

1998,教育部科技进步二等奖(排名第四)

1998,北京市科技进步二等奖(排名第四)

2003,北京市科技进步二等奖(排名第三)

2003,第五届中国硅酸盐学会青年科技奖

2003,入选北京市“科技新星计划”

2004,入选教育部“新世纪优秀人才支持计划”

2005,北京市科技进步二等奖(排名第一)

2013,中国材料研究学会科学技术进步二等奖(排名第三)

2015,河南省科学技术进步奖三等奖(排名第一)


1997,“清华之友――优秀教师奖励金”青年教师群体奖

1999,“清华之友――优秀教师奖励金”一等奖

1999,kaiyun体育登录网页入口“一二·九”优秀辅导员奖

2007,kaiyun体育登录网页入口“林枫”优秀辅导员奖

2007,北京高校优秀辅导员奖

2009,kaiyun体育登录网页入口优秀党建与思想政治工作者

2021,kaiyun体育登录网页入口优秀班主任一等奖


【学术专著】

(1).《复合材料》,陈华辉,刘瑞平,汪长安,北京大学出版社,2021年。

(2).《无机非金属材料题解指南》,黄勇,杨金龙,汪长安,kaiyun体育登录网页入口出版社,2017年。

(3).《高性能多相复合陶瓷材料》,黄勇,汪长安,kaiyun体育登录网页入口出版社,2008年。

(4).《Biomimetics, Learning from Nature》, Wang Chang-An, Le Huirong, Huang Yong, Chapter 10, pp217-240, 2010,  ISBN 978-953-307-025-4, In-Tech Press。

(5).《中国材料工程大典》之第十卷《复合材料工程》,第10篇“陶瓷(玻璃)基复合材料”编委,pp551-636,化学工业出版社,2006年。

(6).《材料辞典》之“无机非金属材料”分编委,化学工业出版社,2006年。

(7).《材料大辞典》,第二版“无机非金属材料”分编委,化学工业出版社,2016年。

(8).《硅酸盐辞典》(第二版),编委,第一章《物理化学基础》分编委会主任,中国建筑工业出版社,2019年


【代表性论文】

(1). Hollow-grained “Voronoi foam” ceramics with high strength and thermal superinsulation up to 1400 C, Materials Today, 2021, 46: 35 (https://doi.org/10.1016/j.mattod.2021.02.003)

(2). Strong metal-support interactions induced by an ultrafast laser. Nature Communications, 12, 6665 (2021) (DOI: 10.1038/s41467-021-27000-5)

(3). Constructing the lithium polymeric salt interfacial phase in composite solid-state electrolytes for enhancing cycle performance of lithium metal batteries, Chemical Engineering Journal, 442 (2022) 136154 (DOI: 10.1016/j.cej.2022.136154)

(4). Excellent Li/Garnet Interface Wettability Achieved by Porous Hard Carbon Layer for Solid State Li Metal Battery, Small, 2022, 18, 2106142 (DOI: 10.1002/smll.202106142)

(5). Nanosecond Laser Cleaning Method to Reduce the Surface Inert Layer and Activate the Garnet Electrolyte for a Solid-State Li Metal Battery, ACS Appl. Mater. Interfaces, 2021, 13, 37082 (DOI: 10.1021/acsami.1c08509)

(6). High-Energy-Density Solid-Electrolyte-Based Liquid Li-S and Li-Se Batteries, Joule, 4 (1): 262-274 (2020) (DOI: 10.1016/j.joule.2019.09.003)

(7). Molten Lithium-Brass/Zinc Chloride System as High-Performance and Low-Cost Battery, Matter, 3 (2020) 1714-1724 (DOI: 10.1016/j.matt.2020.08.022)

(8). An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage, Nature Energy, 2018, 3(9): 732 (DOI: 10.1038/s41560-018-0198-9)

(9). Smart tuning of 3D ordered electrocatalysts for enhanced oxygen reduction reaction, Applied Catalysis B: Environmental, 219: 640-644 (2017) (DOI: 10.1016/j.apcatb.2017.08.017)

(10). Double-oxide sulfur host for advanced lithium-sulfur batteries, Nano Energy, 2017, 38: 12-18. (DOI: 10.1016/j.nanoen.2017.05.041)

(11). Rational design of sandwich-like MnO2-Pd-CeO2 hollow spheres with enhanced activity and stability for CO oxidation, Nanoscale, 2019, 11: 6776 (DOI: 10.1039/c9nr01737b)

(12). Realizing highly reversible and deeply rechargeable Zn anode by porous zeolite layer, Journal of Power Sources, 2022, 540(23): 231659 (DOI: 10.1016/j.jpowsour.2022.231659)

(13). Microstructure and properties of porous Si3N4 ceramics by gelcasting-self-propagating high-temperature synthesis (SHS). Journal of Advanced Ceramics, 2022, 11(1): 172 (DOI: 10.1007/s40145-021-0525-7)

(14). Preparation and characteristics of highly porous BN-Si3N4 composite ceramics by combustion synthesis, Journal of the European Ceramic Society, 2022, 42, 4835 (DOI: 10.1016/j.jeurceramsoc.2022.05.022)

(15). Highly Dispersed Pt3Co Nanocatalysts Embedded in Porous Hollow Carbon Spheres with Efficient Electrocatalytic O2 Reduction and H2 Evolution Activities, ACS Applied Energy Materials, 2022, 5, 4496-4504 (DOI: 10.1021/acsaem.1c04081)

(16). An integrated solvent-free modification and composite process of Li6.4La3Zr1.4Ta0.6O12/ Poly(ethylene oxide) solid electrolytes: Enhanced compatibility and cycle performance, Journal of Power Sources, 2021, 492: 229672 ( DOI: 10.1016/j.jpowsour.2021.229672)

(17). Solvent-Free Process for Blended PVDF-HFP/PEO and LLZTO Composite Solid Electrolytes with Enhanced Mechanical and Electrochemical Properties for Lithium Metal Batteries, ACS Applied Energy Materials, 2021, 4(10): 11802 (DOI: 10.1021/acsaem.1c02566)

(18). In Situ Electrode Stress Monitoring: An Effective Approach to Study the Electrochemical Behavior of a Lithium Metal Anode, ACS Applied Energy Materials, 2021, 4, 3993-4001 (DOI: 10.1021/acsaem.1c00353)

(19). Highly elastic and low resistance deformable current collectors for safe and high-performance silicon and metallic lithium anodes, Journal of Power Sources, 2021, 511, 230418 (DOI: 10.1016/j.jpowsour.2021.230418)

(20). Enhanced Performance of Li6.4La3Zr1.4Ta0.6O12 Solid Electrolyte by the Regulation of Grain and Grain Boundary Phases, ACS Applied Materials Interfaces, 2020, 12 [50]: 56118 (DOI: 10.1021/acsami.0c18674)

(21). Flower-like Hollow MoSe2 Nanospheres as Efficient Earth-Abundant Electrocatalysts for Nitrogen Reduction Reaction under Ambient Conditions, Inorganic Chemistry, 2020, 59: 12941 (DOI: 10.1021/acs.inorgchem.0c02058)

(22). Blending Poly(ethylene oxide) and Li6.4La3Zr1.4Ta0.6O12 by Haake Rheomixer without any solvent: A low-cost manufacture method for mass production of composite polymer electrolyte, Journal of Power Sources, 2020, 451: 227797 (DOI: 10.1016/j.jpowsour.2020.227797)

(23). Submicronic spherical inclusion black pigment by double-shell reaction sintering, Journal of the American Ceramic Society, 2020, 103(3): 1520 (DOI: 10.1111/jace.16911)

(24). Preparation of near net size porous alumina-calcium aluminate ceramics by gelcasting-pore-forming agent process, Journal of the American Ceramic Society, 2020, 103 (8): 4602 (DOI: 10.1111/jace.17075)

(25). Preparation and characterization of monodispersed spherical Fe2O3@SiO2 reddish pigments with core-shell structure, Journal of Advanced Ceramics, 2019, 8 (1): 39 (DOI: 10.1007/s40145-018-0289-x)

(26). A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: Enhanced thermal and electrochemical properties, Journal of Materials Chemistry A, 2019, 7: 16425 (DOI: 10.1039/c9ta03395e)

(27). A monocrystal Fe3O4@ultrathin N-doped carbon core/shell structure: from magnetotactic bacteria to Li storage, Journal of Materials Chemistry A, 2019, 7[36]: 20899 (DOI: 10.1039/c9ta07002h)

(28). Brownian-snowball-mechanism- induced hierarchical cobalt sulfide for supercapacitors, Journal of Power Sources, 2019, 412: 321 (DOI: 10.1016/j.jpowsour.2018.11.055)

(29). Highly dense perovskite electrolyte with a high Li+ conductivity for Li–ion batteries, Journal of Power Sources, 2019, 429: 75 (DOI: 10.1016/j.jpowsour.2019.04.117)

(30). Defocused laser ablation processA high-efficiency way to fabricate MoO3Mo integrative anode with excellent electrochemical performance for lithium ion batteries, Journal of Alloys and Compounds, 2019, 787: 295 (DOI: 10.1016/j.jallcom.2019.02.051)

(31). Designing pinecone-like and hierarchical manganese cobalt sulfides for advanced supercapacitor electrodes, Journal of Materials Chemistry A, 2018, 6 (26): 12782 (DOI: 10.1039/c8ta02438c)

(32). Enhanced anti-deliquescent property and ultralow thermal conductivity of magnetoplumbite-type LnMeAl11O19 materials for thermal barrier coating, Journal of the American Ceramic Society, 2018, 101(3): 1095 (DOI: 10.1111/jace.15285).

(33). A new binder-free and conductive-additive-free TiO2/WO3-W integrative anode material produced by laser ablation, Journal of Power Sources, 2018, 378: 362 (DOI: 10.1016/j.jpowsour.2017.12.063)

(34). In situ preparation of a binder-free nano-cotton-like CuO-Cu integrated anode on a current collector by laser ablation oxidation for long cycle life Li-ion batteries, Journal of Materials Chemistry A, 2017, 5 (37): 19781 (DOI: 10.1039/c7ta04660j).

(35). A soft non-porous separator and its effectiveness in stabilizing Li metal anodes cycling at 10 mA cm-2 observed in situ in a capillary cell. Journal of Materials Chemistry A, 2017, 5: 4300 (DOI: 10.1039/c7ta00069c)

(36). Li-Ion Conduction and Stability of Perovskite Li3/8Sr7/16Hf1/4Ta3/4O3, ACS Applied Materials Interfaces, 2016, 8(23): 14552 (DOI: 10.1021/acsami.6b03070)

(37). Design and Preparation of MnO2/CeO2−MnO2 Double-Shelled Binary Oxide Hollow Spheres and Their Application in CO Oxidation, ACS Applied Materials Interfaces, 2016, 8: 8670 (DOI: 10.1021/acsami.6b00002)

(38). Honeycomb-alumina supported garnet membrane: Composite electrolyte with low resistance and high strength for lithium metal batteries, Journal of Power Sources, 2015, 281: 399 (DOI: 10.1016/j.jpowsour.2015.02.024)

(39). Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr1.5O12 in alumina crucible, Journal of Power Sources, 2014, 260: 109 (DOI: 10.1016/j.jpowsour.2014.02.065)

(40). High Li+ conduction in NASICON-type Li1+xYxZr2-x(PO4)3 at room temperature, Journal of Power Sources, 2013, 240: 50 (DOI: 10.1016/j.jpowsour.2013.03.175)

(41). Hierarchically porous Co3O4 hollow spheres with tunable pore structure and enhanced catalytic activity, Chemical Communications, 2013, 49 [67] 7427 (DOI: 10.1039/c3cc43094d).

(42). Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12, Journal of Power Source, 2012, 209: 278 (DOI: 10.1016/j.jpowsour.2012.02.100)

(43). Optimizing Li+ conductivity in a garnet framework, Journal of Materials Chemistry, 2012, 22 [30]: 15357 (DOI: 10.1039/c2jm31413d)


【发明专利】

(1). 一种低成本批量化制备有机-无机复合固态电解质的方法(ZL201910875710.1),2021年授权

(2). 可实时监测电极应力变化的电池装置、采用该装置的电池和该装置的应用(ZL202010577292.0),2021年授权

(3). 一种锂离子电池一体化负极的激光烧蚀氧化原位制备方法(ZL201710375337.4),2019年授权

(4). SiO2/TiO2/C/S锂硫电池正极材料及其制备方法(ZL201710283404.X),2019年授权

(5). 一种用作超级电容器的二氧化锰-导电聚合物纳米网络结构电极材料的制备方法(ZL201610530689.8),2018年授权

(6). 一种复合电解质片的制备方法(ZL201410785084.4),2017年授权

(7). 一种用于超级电容器的MnO2/碳复合材料的制备方法(ZL201310329532.5),2016年授权

(8). 一种高纯度大尺寸碳化硅单晶及其制备工艺(ZL201410035118.8),2016年授权

(9). 一种锂负极半燃料电池组件(ZL201310489161.7),2015年授权

(10). 一种耐酸碱抗污染超滤膜片的配方及其制备方法(ZL201210111120.X),2015年授权

(11). 一种多级孔结构稀土锆酸盐多孔陶瓷及其制备方法(ZL201210079160.0),2014年授权

(12). 一种多孔二氧化锆陶瓷的制备方法(ZL201110387144.3),2014年授权

(13). 一种具有梯度直通孔结构的多孔陶瓷管的制备方法(ZL201210212318.7),2014年授权

(14). 一种矿物加热电缆用氧化镁绝缘预制管棒的制备方法(ZL201210262836.X),2014授权

(15). 一种高纯大尺寸氧化镁单晶的制备方法(ZL201210160256.X),2014年授权

(16). 一种陶瓷膜管支撑体及其制备方法(ZL201210180915.6),2014年授权

(17). 一种平板结构多孔陶瓷膜支撑体及其制备方法(ZL201210179260.1),2014年授权

(18). 一种多孔陶瓷膜在线反冲洗工艺系统(ZL201210180955.0),2014年授权

(19). 一种多级孔结构陶瓷膜的制备方法(ZL201210180930.0),2013年授权

(20). 高温高压无机过滤膜用多孔陶瓷载体及其制备方法(ZL201210103839.9),2013年授权

(21). 一种高温高压无机过滤膜及其制备方法(ZL201210103645.9),2013年授权

(22). 一种高纯铝硅碳超细粉体的合成方法(ZL201010143590.5),2013年授权

(23). 一种以废旧耐火材料为原料生产高纯铝硅碳粉体的方法(ZL201010143884.8),2013年授权    

(24). 一种高纯铝硅碳片装粉体的合成方法(ZL201010143874.4),2013年授权

(25). 一种高纯铝硅碳块体的合成方法(ZL201010144342.2),2013年授权

(26). MG-AL-C中间合金及其制备方法和用途(ZL200810182452.0),2011年授权

(27). 一种多孔陶瓷及其制备方法(ZL200910090067.8),2012年授权

(28). 一种用石粉作原料制备高仿真石雕的方法(ZL200910024353.4),2012年授权

(29). 利用胶态成型工艺制备轻质、高强度陶瓷材料的方法(ZL200710099623.9), 2009年授权

(30). 一种“冷冻-凝胶成型”制备多孔陶瓷材料的工艺(ZL200710099624.3),2013年授权

(31). 一种高纯超细二硼化锆粉料的制备方法(ZL200610114427.X),2009年授权

(32). 一种耐高温氧化镁电热绝缘材料的制备方法(ZL00130288.4),2003年授权

(33). 一种超高韧性氮化硅基复合材料的制备方法(ZL99107783.0),2005年授权

(34). 一种火焰喷涂用氧化物陶瓷棒的制备方法(ZL99107782.2),2001年授权

(35). High-Rate Aluminum Anode for Li-ion Battery with Long Cycle Life and Ultrahigh Capacity, USA, No. 62/051, 365, 2016.9.17(美国发明专利)

(36). Solid Electrolyte Separator with Large Reversible Elastic Strains Stops Li Dendrites and Enables Stable Cycling of Li Metal Anode at High Current Densities and Areal Capacities, USA, No. 62/393,864, 2016.9.13(美国发明专利)


【课题组成员】

博士生:陈林辉、陈仕乐、童荣傲、夏钰婷、叶书群、张景熙、肖烨

硕士生:徐明杰(郑州大学)、刘添立(景德镇陶瓷大学)、刘娟(景德镇陶瓷大学)、吴文强(景德镇陶瓷大学)

已出站博士后:李海燕(2019)、薛伟江(2016)、刘瑞平(2014)、张晨光(2013)、李青翠(2013)、周军(2012)、赵建立(2010)、周立忠(2009)、孙万昌(2006)、赵世柯(2003)、邹林华(2002)

访问学者:单科(红河公司,2022)、焦钰(西昌公司,2022)、高莉(青海大学,2012)、薛彩红(青海大学,2012)、王海龙(郑州大学,2006)

已毕业博士生:杨浏鑫(2022)、张健(2022)、谢俊伟(2022)、梁芃(2021)、黄泽亚(2020)、苏一博(2020)、赵禹程(2018)、刘凯(2017)、龚铭(2017)、徐婷婷(2016,获得kaiyun体育登录网页入口“启航奖”金奖)、李洒(2015,获得kaiyun体育登录网页入口优秀博士学位论文二等奖)、陆浩然(2015)、郞莹(2014)、李玉涛(2013)、郭瑞(2011)、陈瑞峰(2007)、李翠伟(2003)、昝青峰(2003);黄冰(2021,天津大学)、董薇(2012,建材院) 、尉磊(2012,北科大)、王明福(2011,哈工大)、王少锋(2010,北科大)

已毕业硕士生:王成(2016)、李承书(2015)、杨安坤(2011获kaiyun体育登录网页入口优秀硕士论文)、胡良发(2010)、刘伟渊(2009)、陈科宇(2009) 、林玮(2007)、彭春庆(2006,kaiyun体育登录网页入口优秀硕士毕业生、优秀硕士论文)、宋扬(2006)、吴立峰(2004)、周爱国(2003,kaiyun体育登录网页入口优秀硕士论文)、汤珂(2002,kaiyun体育登录网页入口十佳员工、优秀硕士毕业生、优秀硕士论文);刘杰文(2022,景德镇陶瓷大学)、颜浩(2022,景德镇陶瓷大学)、郝边磊(2020,景德镇陶瓷大学)、蒙福海(2020,江西理工)、罗江斌(2019,江西理工)、徐唱(2019,江西理工)、王强(2018,江西理工)、陈仕乐(2017,景德镇陶瓷大学)、徐吉良(2017,景德镇陶瓷大学)、黄冰(2016,江西理工)、张健(2016,景德镇陶瓷公司)、任宪仓(2016,景德镇陶瓷公司)、罗新春(2016,景德镇陶瓷公司)、江涛(2015,景德镇陶瓷公司) 、朱国振(2014,景德镇陶瓷公司)、刘美景(2014,景德镇陶瓷大学)、李慧(2009,北科大)、尉磊(2008,北科大)、龙斌(2007,北科大)、邱丽莉(2007,北科大) 。

已毕业员工:张心同(2022)、杨文旭(2022)、张景熙(2021)、刘昊南(2021)、傅神宇(2020)、万均扬(2020)、童荣傲(2019)、赵伟然(2019)、王子冲(2019)、潘柏羽(2018)、陈林辉(2018) 、杨浏鑫(2017)、罗京(2017) 、刘帅(2017)、徐孟轲(2016) 、顾伏飙(2016,获得kaiyun体育登录网页入口优秀毕业论文) 、张健(2014)、马江涛(2014)、王成(2013)、张祺(2013) 、董岩皓(2012,获得kaiyun体育登录网页入口优秀本科毕业论文)、刘凯(2012) 、徐婷婷(2011)、林龙(2010)、赵晨辰(2010) 、魏乔苑(2009) 、杨安坤(2008)、陈科宇(2007)、郭宝震(2007)、李成君(2007)、滕旭(2006)、赵以松(2005)、武少君(2005)、宋扬(2004)、齐亮(2003)、吴立峰(2001)、吴宇诤(2000)、汤珂(2000)、夏金霞(2000)、杨艳英(1999)、孙哲峰(1998)

国际短期交流员工:李京桓(博士生,台湾成功大学)、Jacob Misch(2015,美国)、Shakked Halperin(2013,U. Missouri - Columbia美国)、Bonnie Cao(2012,美国)、Caleb Koch(2011,美国)、周欣(2011,中国台湾)、刘强(2008,美国Berkley)



【招生/招聘信息】

欢迎有材料学、物理、化学背景的同学来本课题组攻读学位或博士后。

Copyright © 2020 kaiyun体育登录网页入口 All Rights Reserved. 地址:kaiyun体育登录网页入口 逸夫技术科学楼 100084